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Abstract

Existing multimodal conditional image synthesis (MCIS) methods generate images conditioned on
any combinations of various modalities that require all of them must be exactly conformed, hindering
the synthesis controllability and leaving the potential of cross-modality under-exploited. To this end,
we propose to generate images conditioned on the compositions of multimodal control signals, where
modalities are imperfectly complementary, i.e., composed multimodal conditional image synthesis
(CMCIS). Specifically, we observe two challenging issues of the proposed CMCIS task, i.e., the modal-
ity coordination problem and the modality imbalance problem. To tackle these issues, we introduce a
Mixture-of-Modality-Tokens Transformer (MMoT) that adaptively fuses fine-grained multimodal con-
trol signals, a multimodal balanced training loss to stabilize the optimization of each modality, and a
multimodal sampling guidance to balance the strength of each modality control signal. Comprehensive
experimental results demonstrate that MMoT achieves superior performance on both unimodal condi-
tional image synthesis (UCIS) and MCIS tasks with high-quality and faithful image synthesis on com-
plex multimodal conditions. The project website is available at https://jabir-zheng.github.io/MMoT.

Keywords: Image synthesis, Multimodal conditions, Transformer, Modality coordination, Modality imbalance

1 Introduction

With the maturity of image synthesis quality, we
start focusing on improving its controllability to
generate specific images as we expected. To con-
trol the image content, various control signals from

different modalities have been proposed, including
texts (Zhou et al., 2021), sketches (T.-C. Wang
et al., 2018), segmentation masks (T.-C. Wang et
al., 2018), and bounding box layouts (Sun & Wu,
2021), where each of them has its own advantages,
e.g., texts usually describe attributes of objects
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Text: A boat is traveling on

rough ocean, at dusk.

Fig. 1 CMCIS relaxes the stringent requirements for
inputs. The input can be the composition of multiple
complementary modalities (e.g., text, sketch, segmentation
mask, and bounding boxes), and our MMoT can generate
reasonable results leveraging all inputs.

and style of images, segmentation masks depict
the environmental contexts, and sketches/layouts
are able to control the position and size of each
object.

The pioneering methods mostly focus on uni-
modal conditional image synthesis (UCIS) that
generates images with a single unimodal con-
trol signal, e.g., text-to-image (Ramesh, Dhariwal,
Nichol, Chu, & Chen, 2022; Ramesh et al., 2021;
Saharia et al., 2022; Yu et al., 2022; Zhou et
al., 2021), sketch-to-image (Esser, Rombach, &
Ommer, 2021; Park, Liu, Wang, & Zhu, 2019;
T. Wang et al., 2022; T.-C. Wang et al., 2018),
segmentation-to-image (Esser et al., 2021; Park
et al., 2019; Sushko et al., 2022; T. Wang et al.,
2022; T.-C. Wang et al., 2018), and layout-to-
image (S. He et al., 2021; Li, Wu, Koh, Tang,
& Sun, 2021; Sun & Wu, 2021; Sylvain, Zhang,
Bengio, Hjelm, & Sharma, 2021; Z. Yang, Liu,
Wang, Yang, & Tao, 2022; Zhao, Yin, Meng,
& Sigal, 2020). Despite the great progress they
have achieved, those methods fail to fully uti-
lize the information from different modalities,
thus hindering their controllability and appli-
cations in real scenarios. To this end, recent
works (X. Huang, Mallya, Wang, & Liu, 2022; Li
et al., 2022; Z. Zhang et al., 2021) propose to
generate images conditioned on any combinations
of various modalities, e.g., sketch+segmentation
or text+segmentation, termed multimodal con-
ditional image synthesis (MCIS). However, the
current MCIS strictly requires every unimodal sig-
nal must be exactly conformed with each other,
leaving the potential of cross-modality under-
exploited. Additionally, it is unfriendly to the
majority of users without a professional painting
background.

In this paper, we propose a more challenging
task, namely Composed Multimodal Conditional
Image Synthesis (CMCIS), which allows each
unimodal signal to be imperfectly complemen-
tary and the final expectation of images to be
composed of all modality signals. For example,
as illustrated in Figure 1, the user can generate
a desired image by using a variety of different
modalities to describe different components of the
scene, i.e., drawing a sketch of the boat, filling
the sea with a segmentation mask, using a bound-
ing box to decide the size and location of the
airplane, and the text giving high-level semantic
information such as dusk.

Unfortunately, existing MCIS methods, no
matter GAN-based (X. Huang et al., 2022),
Transformer-based (Li et al., 2022; Z. Zhang et al.,
2021), or diffusion-based (L. Huang et al., 2023),
are not able to handle the new challenging CMCIS
task. As illustrated in Figure 2, we observe two
main issues of existing MCIS methods: (i) the
modality coordination problem due to the non-
adaptive fusion on fine-grained information across
multiple modalities, e.g., the tree incorrectly com-
posed with the texture of the mountain in Figure 2
(a); and (ii) the modality imbalance problem that
caused by the imbalanced distribution of each
modality in datasets, i.e., different modalities tend
to converge at different rates in Figure 2 (b).

Specifically, the modality coordination prob-
lem arises from the imperfectly complementary of
input multi-modality signals, where each image
region may involve a different combination of
modality (e.g., sky by segmentation masks, tree
by sketches+segmentation masks in Figure 2 (a)),
i.e., the proposed CMCIS task. Such imperfec-
tion demands dynamic coordination of modali-
ties (i.e., adaptive fusion) to adapt to varying
image regions. The existing methods have lim-
itations in effectively capturing the fine-grained
coordination among modalities adapted to dif-
ferent regions (i.e., non-adaptive fusion). They
either represent each modality as a single latent
vector, thereby sacrificing the regional specificity
of modality coordination, or take all modality
signals as input then simultaneously learn cross-
modal and cross-region interactions, making it
challenging to achieve fine-grained adaptation.

And themodality imbalance problem arises due
to the varying levels of information density exhib-
ited by different modalities, e.g., text tokens being
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(a) Modality coordination problem (b) Modality imbalance problem

Fig. 2 (a) Modality coordination problem: incorrect coordination of multiple modalities, e.g., the tree incorrectly composed
with the mountain. (b) Modality imbalance problem: various modalities tend to converge at different rates and converge to
different endpoints.

high density, while segmentation tokens being
lower. Such differences over the whole dataset
lead to imbalanced distribution of each modal-
ity. During training, the imbalance further affects
convergence difficulty (K. He et al., 2022), which
manifests as different modalities converging at dif-
ferent rates and to different endpoints (e.g., sketch
converges faster than other modalities in Figure 2
(b) because it describes more detailed conditional
information and is therefore easier to optimize).
However, existing methods treat each modality
equally thus suffering from the issue of modality
imbalance, particularly in the proposed CMCIS
task.

To tackle the former modality coordination
problem, we propose the Mixture-of-Modality-
Tokens Transformer (MMoT) to fully exploit
the cooperativity across modalities. Specifically,
MMoT uses multiple encoders to model the intra-
modal interaction. Then, modality-specific cross-
attention is adopted to inject multimodal con-
ditional information into the decoder. Finally,
the key module multistage token-mixer adaptively
fuses multimodal conditioning information with
the masked cross-attention mechanism. To tackle
the modality imbalance problem, we propose a
multimodal balanced loss to adaptively control the
optimization of each modality during the training
phase, as well as a multimodal sampling guid-
ance during the sampling phase to control the
influences of different modalities and introduce
divergence maps to the sampling process to realize
more spatially coordinated generation.

To the best of our knowledge, we are the first
to focus on specific challenges of the CMCIS task,
and our contributions are summarized as follows:

• We propose a new challenging task, namely
Composed Multimodal Conditional Image Syn-
thesis, which allows users to input various
control signals that are not perfectly comple-
mentary.

• We propose the Mixture-of-Modality-Tokens
Transformer (MMoT) for CMCIS, which adap-
tively fuses fine-grained conditional signals
across different modalities.

• We introduce the multimodal balanced train-
ing loss and the divergence-driven sampling
guidance to alleviate the imbalance problem
between multiple modalities in CMCIS.

• The proposed MMoT accomplishes high-quality
image synthesis conditioned on complex com-
positions of multiple modalities and achieves
new state-of-the-art performance on COCO-
stuff (Caesar, Uijlings, & Ferrari, 2018; Lin et
al., 2014) and LHQ (Skorokhodov, Sotnikov, &
Elhoseiny, 2021).

2 Related Work

2.1 Unimodal Conditional Image
Synthesis

Deep generative models are a family of tech-
niques in which deep neural networks are
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trained to simulate the distribution of train-
ing data. (Bond-Taylor, Leach, Long, & Will-
cocks, 2021). There are a variety of generative
models have been proposed, such as energy-
based models (LeCun, Chopra, Hadsell, Ranzato,
& Huang, 2006), normalizing flows (Kobyzev,
Prince, & Brubaker, 2020; Papamakarios, Nalis-
nick, Rezende, Mohamed, & Lakshminarayanan,
2021), variational autoencoders (VAEs) (Kingma
& Welling, 2014; Sohn, Lee, & Yan, 2015), gen-
erative adversarial networks (GANs) (Goodfellow
et al., 2020; Mirza & Osindero, 2014; C. Yang,
Shen, & Zhou, 2021), generative image transform-
ers (GITs)(Chang, Zhang, Jiang, Liu, & Freeman,
2022; Esser et al., 2021) and denoising diffusion
models (Dhariwal & Nichol, 2021; Ho, Jain, &
Abbeel, 2020). Generative models typically make
trade-offs in quality, sampling speed, and diversity.

GIT is one of the more popular models of
late, especially for uni-modal conditional gen-
eration (Gafni et al., 2022; Yu et al., 2022)
as the advance in discretizing multi-modalities
and the powerful sequence modeling capabili-
ties. Recently, large-scale text-to-image generative
models (Ramesh et al., 2022; Saharia et al., 2022;
Yu et al., 2022) have made explosive processes and
achieved unprecedented superior results.

Traditional GITs (M. Chen et al., 2020;
Child, Gray, Radford, & Sutskever, 2019; N. Par-
mar et al., 2018) treat image synthesis as a
“pixel-by-pixel” autoregressive sequence genera-
tion task with the help of the self-attention mech-
anism (Vaswani et al., 2017). However, as the
computation requirement is highly correlated with
the sequence length, sampling a high-resolution
image may be a challenging endeavor. The pro-
posed Vector Quantised model (Van Den Oord,
Vinyals, et al., 2017) significantly reduces the
processing burden and enables the sampling of
high-resolution images based on GITs (Esser et
al., 2021; Ramesh et al., 2021). And as the scale of
the model increases, so does the ability to generate
the model (Yu et al., 2022).

The design of model architecture is another
point of interest. Instead of using decoder-only
language models, recent research (Wu, Liang, Ji,
et al., 2022; Yu et al., 2022) employs an encoder-
decoder transformer for conditional image syn-
thesis and achieves promising results. Our work

proposed a novel encoder-decoder-based architec-
ture that decouples intra-modal interaction and
fusion.

2.2 Multimodal Conditional Image
Synthesis

Multimodal conditional image synthesis has
attracted increasing attention recently. Represen-
tative work includes M6-UFC (Z. Zhang et al.,
2021) and PoE-GAN (X. Huang et al., 2022).

M6-UFC is a Bert-based framework based on
the two-stage image synthesis method (M. Chen
et al., 2020; Esser et al., 2021; Ramesh et al.,
2021; Razavi, Van den Oord, & Vinyals, 2019;
Van Den Oord et al., 2017). In M6-UFC, the mul-
timodal conditional inputs and generated image
are transformed into a sequence of tokens to
be processed by the unidirectional Transformer
decoder (Vaswani et al., 2017). The advantages of
M6-UFC are that it unifies various modalities in a
universal form and can thus easily extend to more
guidance modalities. However, it employs concate-
nation to combine multimodal user inputs, and
intra-modal interaction is interlaced with fusion;
as a result, it may struggle with handling missing
modalities (X. Huang et al., 2022; Ma, Ren, Zhao,
Testuggine, & Peng, 2022).

PoE-GAN is GANs based method with the
multiscale projection discriminator (Liu, Yin,
Shao, Wang, et al., 2019; Miyato & Koyama, 2018;
T.-C. Wang et al., 2018). In PoE-GAN, condi-
tional information from multiple modalities is first
encoded into a unified latent space and then fused
using product-of-experts modeling (Hinton, 2002).
The advantages of PoE-GAN are that it decouples
intra-modal interaction and fusion, and is more
robust to missing modalities. However, conditional
GANs are known to be susceptible to mode col-
lapse (Isola, Zhu, Zhou, & Efros, 2017; Odena,
Olah, & Shlens, 2017) and spatial information is
lost in the latent space of PoE-GAN. MMoT inher-
its the advantages of the above two works and
is able to produce reasonable outputs even with
counterfactual condition modalities.

Recently, there have been some meth-
ods (L. Huang et al., 2023; Mou et al., 2023;
L. Zhang & Agrawala, 2023) that attempt to
introduce more control signals to large-scale Text-
to-Image pre-trained models (e.g., Stable dif-
fusion (Rombach, Blattmann, Lorenz, Esser, &
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Ommer, 2022)) to achieve multimodal conditional
image generation. However, such methods are
text-centric, so it is difficult to leverage the impact
of various imperfectly complementary modality in
the case of our proposed CMIS task.

3 Method

The goal of CMCIS is to train a single model
that approximates image distributions conditional
on any combination of feasible modalities. Math-
ematically, the objective is to learn p(x|C) when
given a dataset of images x paired with a con-
ditional input C which consists of M different
modalities C ⊆ {c1, c2, . . . , cM}.

Our model follows an encoder-decoder struc-
ture, consisting of M encoders for modeling
intra-modal interaction and a common decoder
for fusion among multi-modalities, as shown in
Figure 3. Our proposed methods are described in
detail later, comprised of 1) describing the two-
stage transformer-based framework, 2) introduc-
ing the Mixture-of-Modality-Token transformer
with a multistage token-mixer module, 3) training
with multimodal balanced loss, and 4) sampling
with divergence-driven guidance.

3.1 Preliminary

In this section, we review the two-stage
transformer-based framework (M. Chen et al.,
2020; Esser et al., 2021; Ramesh et al., 2021;
Razavi et al., 2019; Van Den Oord et al., 2017)
for image synthesis. At the first stage, a convo-
lutional model consisting of an encoder E and
a decoder D is learned, such that, an image
x ∈ R3×H×W can be represented as a collection
of code-words zq ∈ Rnz×h×w with code from a
learned, discrete codebook Z = {zk}Kk=1, where
nz is the dimensionality of codes, zk ∈ Rnz is
the kth code-word, and K is the number of code-
words. More precisely, the convolutional encoder
E first encodes the x as ẑ = E(x) ∈ Rnz×h×w

and then an element-wise quantization q(·) is
applied to each spatial element ẑij ∈ Rnz to
obtain the closest discrete code-work zk, i.e.,
q(ẑij) = argminzk∈Z∥ẑij − zk∥. At last, a given
image x can be approximated by a convolutional
decoder D, i.e., x̂ = D(zq). Overall, the first

stage can be denoted by:

zq = q(E(x)), x̂ = D(zq), (1)

the convolutional model and the codebook can be
trained via the loss function:

LVQ(E,D,Z) = ∥x− x̂∥2 + ∥sg[E(x)]− zq∥22
+ ∥sg[zq]− E(x)∥22,

(2)

where sg[·] denotes the stop-gradient operation.
At the second stage, the quantized encoding

of an image x can be transformed into a sequence
of code-word index s ∈ {0, . . . , |Z| − 1}h×w.
Therefore, image generation can be formulated as
autoregressive sequence generation modeled with
a transformer. The transformer learns to predict
the distribution p(si|s<i) of possible next token
si given preceding tokens s<i. Then the likeli-
hood of the full representation can be computed
as p(s) =

∏
i p(si|s<i). The transformer can be

trained by maximizing the log-likelihood:

LT = Ex∼p(x) [− log p(s)] . (3)

3.2 Mixture-of-Modality-Tokens
Transformer

We propose a novel framework, namely Mixture-
of-Modality-Tokens Transformer (MMoT) for
adaptive fusion among multimodal information.

3.2.1 Modality representation in
unified-form

In this paper, we consider four commonly used
input conditions, including text, segmentation
mask, sketch, and bounding box layout. For visual
modalities, i.e., image, segmentation masks, and
sketch, we quantize it with the help of dis-
crete VAE, e.g., VQGAN (Esser et al., 2021).
For bounding boxes layout, we follow the same
tokenization method as in (Jahn, Rombach, &
Ommer, 2021). And CLIP (Radford et al., 2021)
is our solution for tokenizing text modalities.

Specifically, to unify the embeddings of dif-
ferent modalities including image, segmentation
masks, sketch, bounding boxes, and text, we treat
all of them as language-like tokens and embed the
tokens to the latent space Um ∈ Rl×d, where m is
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Fig. 3 The overview of the Mixture-of-Modality-Tokens Transformer for CMCIS task. Given an image and multiple modal-
ities, including text, segmentation masks, sketch, and bounding boxes, we tokenize them into discrete tokens with different
tokenizers, and then (a) model intra-modal interaction with modality-specific encoders; (b) inject multimodal conditioning
information into the decoder with modality-specific cross-attention; (c) adaptively fuse conditional signals via the multistage
token-mixer. We train MMoT with multimodal balanced loss and sample with divergence-driven multimodal guidance.

used to distinguish different modalities, l denotes
the number of tokens and d means the dimension
of each embedding.

Given an image X ∈ R3×HI×WI , we quan-
tize it with the help of a discrete VAE, e.g.,
VQGAN (Esser et al., 2021). Specifically, the dis-
crete VAE encodes the image to a latent space,
and maps the latent features to the closest dis-
crete tokens from the codebook Zimage = {zk}Kk=1

with K entries. The quantized representations are

in the format of N{hi,wi}
image , where Nimage is the

set of integers in [0, 1, . . . ,K), and hi, wi are the
dimension of quantized representations. The seg-
mentation masks S ∈ RHS×WS and the sketch
K ∈ R3×HK×WK can be tokenized in the same
pipeline but with different pre-trained discrete
VAE models. Such content of segmentation masks
and sketch in the raw space can be represented

as s ∈ N{hs,ws}
seg and k ∈ N{hk,wk}

sketch with differ-
ent codebook Nseg ∈ [0, 1, . . . ,K ′) and Nsketch ∈
[0, 1, . . . ,K†), respectively.

Given a bounding boxes layout consists of a set
of objects of their positions and category classes,
we directly tokenize it into sequential object
tokens b = {(oi, pi)NB

i=1} with NB objects, where oi
denotes the ith object’s category, and pi = [tli, bri]
represents its top-left and bottom-right corner
positions.

For image, segmentation masks, sketch, and
bounding boxes, we feed their discrete codes to
respective embedding layers to get the continuous
representations.

As for text modalities, CLIP (Radford et al.,
2021) is our solution. A transformer-based encoder
is used to represent the discrete token sequence
into a high dimensional vector once the sentence is
tokenized with Byte-Pair Encoding (BPE). Then
we use this vector as the final representation in
the form of R{1,d}, which means the text embed-
ding only occupies one token as the input to our
MMoT module. For datasets that lack correspond-
ing textual descriptions, we use image embedding
as the pseudo-text representation from CLIP as a
replacement.

In general, the representations of images can
be denoted as X ∈ Rlimage×d and the repre-
sentations of the conditional modality m can be
denoted in the same dimension as Cm ∈ Rlm×d

but with different length of tokens lm, and as we
discussed, the text modality contributes only one
token, where ltext = 1.

3.2.2 Attention mechanism

We recall the attention mechanism since it is an
important means for MMoT to achieve interac-
tion and fusion. The attention mechanism draws
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global dependencies between them with Query-
Key-Value (QKV) model, where queries Q =
WQX, keys K = WKC and values V = WV C
with the learnable weights W . Thus the attention
function can be defined as:

Attn(X,C) = softmax(
QKT

√
D

)V. (4)

It is worth noting that with the given condi-
tion C that differs from the input X, the attention
mechanism is widely known as cross-attention
CA(X,C). If the condition information C is the
same as the inputX, the attention mechanism can
be expressed as Attn(X,X), which is known as
self-attention SA(X).

3.2.3 Modeling intra-modal interaction
with modality-specific encoders

To model the intra-modal interaction for var-
ious modalities, we introduce modality-specific
encoders that project input features into an inter-
mediate representation.

Each modality encoder consists of N self-
attention layers. Given the input features Ce

m(n−
1) ∈ RLm×D of modality m in (n− 1)th layer, the
output Ce

m(n) ∈ RLm×D of the nth encoder layer
can be calculated as:

Ce
m(n) = SA[Ce

m(n− 1)]. (5)

3.2.4 Injecting multimodal
conditioning information with
modality-specific cross attention

In order to inject multimodal conditional infor-
mation into the decoder, we use modality-specific
cross-attention to fuse the image feature with each
modality feature.

Specifically, given the input image features
X(n − 1) of the (n − 1)th decoder layer and the
output Ce

m(N) of the encoder’s last layer, the out-
put Cd

m(n) ∈ RLimage×D for nth decoder layer is
given by:

X(n) = SA[X(n− 1)],

Cd
m(n) = CA[X(n), Ce

m(N)].
(6)

3.2.5 Adaptive fusion with multistage
token-mixer

After applying cross-attention, the multistage
token-mixer is proposed to fuse the modal-
ity tokens which contain conditional information
related to a specific modality. A special [PULSE]
token P within token-mixer is introduced to adap-
tively estimate the combination weights (i.e.,
attention scores) of each modality token and fuse
them with the masked cross-attention mechanism.
The combination-weight maps in Figure 9 (c)
show that [PULSE] token can effectively evaluate
the influences of different modalities in different
decoder layers.

Specifically, with the output X(n) of the nth

self-attention layer and a set of outputs of the
nth cross-attention layer, we adapt a multistage
token-mixer to fuse the conditional information
from different modalities and then feed the fusion
features to the subsequent decoder layers:

X†(n) = Mixer[X(n),Cd(n)], (7)

where C is the stack of all conditional modalities,
i.e., C ∈ RM×Limage×D.

The Mixer function can be defined as:

Mixer(X,C) := softmax(
PFT

√
D

)F, (8)

where we concatenate the latent representation
of image X(n) with the stack representation C
of M modalities along the modality dimension to
form F ∈ RLimage×(M+1)×D, while its transpose
can be denoted as FT ∈ RLimage×D×(M+1). P ∈
RLimage×1×D is the [PULSE] token. Noted that
the random masks will be applied in the Mixer
function during the training phase, which serve
as modality dropouts to handle missing-modality
cases during inference.

3.3 Multimodal Balanced Loss

To train the MMoT, we propose Lmmb, an
improved cross-entropy loss named multimodal
balanced loss, for sequential prediction tasks to
realize balanced optimization among different
modalities:

Lmmb = Es∼p(s)Ex,Cs∼p(x,Cs) [− log p(x|Cs)] , (9)
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where p(s) is the probability of the occurrence
of subset Cs. In order to adaptively control the
optimization of each subset, we set:

p(s) = − log p(x|Cs)
/∑2M

k=1
[− log p(x|Ck)] .

(10)
As the joint conditional distribution in Eq. (9) is
able to be represented as the product of sequen-
tial conditional distributions in an auto-regressive
process, we can have:

p(x|Cs) =
∏
i

p(xi|x<i, Cs), (11)

where i is the index in a token sequence. In the
simplest case, p(s) = 1/2M , which means that any
subset Cs of input modalities has the same chance
to appear in the forward process, would cause an
imbalanced multimodal optimization because dif-
ferent subsets contain different levels of control
information. It is therefore necessary to introduce
a parameter to indicate the strength of the given
conditions. Intuitively, p(x|Cs) indicates how easy
it is to optimize this subset, so that when p(s)
proportional to [− log p(x|Cs)] can make MMoT
focus on the subsets that are more difficult to opti-
mize. We will show the effectiveness of multimodal
balanced loss in ablation experiments.

3.4 Divergence-driven Sampling
Guidance

During inference, we propose multimodal guid-
ance for the CMCIS task to balance the influences
of various control signals. Assuming that all the
input conditional modalities are statistically inde-
pendent and using M ′ to denote the number
of modalities in subset Cs, the sequential condi-
tional distribution p(xi|x<i, Cs) in Eq. (11) can be
rewritten as follows:

p(xi|x<i, Cs) = p(xi|x<i)

[
p(Cs|xi, x<i)

p(Cs|x<i)

]

= p(xi|x<i)

M ′∏
m=1

[
p(cm|xi, x<i)

p(cm|x<i)

]
.

(12)
Inspired by the influence of the condition-

ing signal can be amplified by the guidance

scale (Dhariwal & Nichol, 2021), we use λm to con-
trol the influence of the mth conditioning signals:

pλ(xi|x<i, Cs) ∝ p(xi|x<i)

M ′∏
m=1

[
p(cm|xi, x<i)

p(cm|x<i)

]λm

= p(xi|x<i)

M ′∏
m=1

[
p(xi|x<i, cm)

p(xi|x<i, ∅)

]λm

.

(13)
For mitigation of computation, we denote

Eq. (13) to the log in logarithmic form:

log pλ(xi|x<i, Cs) = log p(xi|x<i)+

M ′∑
m=1

λm [log p(xi|x<i, cm)− log p(xi|x<i, ∅)] ,

we can then synchronously generate multiple par-
allel token streams: token streams conditioned on
different modalities including empty input, and
apply multimodal guidance on logit scores:

puncon = TL(x|∅),
pconm = TL(x|cm),

p =puncon +

M ′∑
m=1

λm(pconm − puncon),

(14)

where the function TL(x|c) computes the logits
outputted by MMoT decoder when conditioned
on c, ∅ means the null condition for classifier free,
puncon are logits scores obtained by unconditional
token stream, pconm are logits scores obtained by
conditional token stream of modality m, p are
the multimodal guided logits score, and λm is
the guidance scale relevant to the corresponding
modality.

In addition, based on an observation that the
Jensen–Shannon Divergence (JSD) between the
unconditional logits and conditional logits con-
tains rich semantic information (Figure 9 (b)),
we use JS divergence to decide the multimodal
guidance scale:

λm ∝ JSD(pconm − puncon).

It is worth noting that the suggested mul-
timodal guidance can not only increase sample
quality but, more crucially, lead to more spatially
coordinated images.
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4 Experiments

In this section, we evaluate the quality and diver-
sity of our versatile MMoT in synthesizing images
under various conditional modalities or compo-
sitions of them. The generated images with a
set of conditional input modalities show that
MMoT can carry out effective interaction and
fusion of multimodal information (Sect. 4.3), and
superior results with extensive conditional image
synthesis methods state that MMoT is robust
to all kinds of modalities (Sect. 4.2). We con-
duct ablation studies to validate the effectiveness
of different modules of MMoT (Sect. 4.4), and
we provide some important insights about how
MMoT realizes interaction and fusion via several
visualizations (Sect. 4.5).

We performed our experiments on two
datasets: COCO-Stuff (Caesar et al., 2018; Lin et
al., 2014) and LHQ (Skorokhodov et al., 2021).
COCO-Stuff is a derivative work of the COCO
dataset, which contains dense pixel-level and
instance-level annotations including text descrip-
tions, segmentation maps, bounding boxes, and so
on. LHQ is a dataset of 90k nature landscapes
but without any annotations, so we use pseudo-
labeling methods to obtain text, segmentation
masks, and sketch annotations. More details about
the datasets are in 4.1.1.

4.1 Experimental Setup

4.1.1 Datasets

We evaluate the proposed MMoT on COCO-
Stuff (Caesar et al., 2018; Lin et al., 2014) and
LHQ (Skorokhodov et al., 2021). All input modal-
ities are obtained from either human annotations
or pseudo-labeling methods. And for fair compar-
isons with PoE-GAN, the same pseudo-labeling
methods were used in our approach. We describe
details about each dataset in the following.
COCO-Stuff is an expansion of the Microsoft
Common Objects in Context (MSCOCO)
dataset (Lin et al., 2014), which includes 91 stuff
classes and 80 object classes. It contains 123,287
images of complex scenes, including 118,287
training images and 5,000 test images. All images
are randomly cropped to 256×256 in our main
experiments and ablation studies.

Annotations (i.e., text, segmentation mask,
sketch, and bounding box layout) for each image

are obtained from either human annotations or
pseudo-labeling methods: (i) In COCO-Stuff, each
image has 5 text captions, we use CLIP text
encoder to extract a high dimension vector per
caption. (ii) We direct use the segmentation
mask provided in COCO-Stuff. (iii) To obtain
the sketch annotation, we first detect the edge
per image with the HED (Xie & Tu, 2015) and
then simplify the rough sketch with the sketch
cleanup process (Simo-Serra, Iizuka, Sasaki, &
Ishikawa, 2016). (iv) We use the bounding boxes
and labels provided in COCO-stuff as the ground
truth bounding box layout.
LHQ is a dataset containing 90,000 high-
resolution landscape images crawled and prepro-
cessed from Unsplash and Flickr. The dataset is
randomly split into an 86,400 training set and
a 3,600 test set, and all images are randomly
cropped to 256×256 in our main experiments.

Since the vanilla dataset does not come with
any manual annotations, annotations (i.e., text,
segmentation mask, and sketch) are obtained from
pseudo-labeling methods: (i) For the text annota-
tion, we use the pre-trained CLIP image encoder
to extract a feature vector as the pseudo text
embedding. (ii) DeepLab-v2 (L.-C. Chen, Papan-
dreou, Kokkinos, Murphy, & Yuille, 2017) was
used to produce pseudo segmentation mask anno-
tation. (iii) HED (Xie & Tu, 2015) followed by the
sketch cleanup process (Simo-Serra et al., 2016)
was adopted to annotate each image with a sketch
map.

4.1.2 Evaluation metrics

For different conditional image synthesis tasks,
we use different metrics to evaluate the gen-
eration performance over all existing methods
and our proposed MMoT. They are Incep-
tion Score (IS)(Salimans et al., 2016), Frechet
Inception Distance (FID)(Heusel, Ramsauer,
Unterthiner, Nessler, & Hochreiter, 2017) and
Clean-FID(G. Parmar, Zhang, & Zhu, 2021). IS
and FID are the most commonly used metrics to
evaluate the quality and diversity of generated
images. Clean-FID is an improved version of FID.
Inception Score (IS) measures the quality of
generated images by computing the expected KL-
divergence between the marginal class distribution
over all generated images and the conditional dis-
tribution for a particular generated image, using
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the class probability predicted by the Inception
Net. This metric is expected to capture both the
fidelity and diversity of generated images.
Frechet Inception Distance (FID) measures
the similarity between the embedding feature of
generated and real images. This is achieved by
fitting the embedding features into a multivari-
ate Gaussian distribution and computing their
Frechet distance.
Clean-FID. Under the hood, computing FID
contains several subtle implementation decisions,
notably image resizing, quantization, and format-
ting. Any inconsistency in the steps leads to
results that are no longer comparable to other
methods. The resize operation and the image
quantization/compression are especially impact-
ful. To facilitate an easy comparison, (G. Parmar
et al., 2021) propose an easy-to-use library, i.e.,
clean-fid, which is more suitable for benchmark-
ing due to its reported benefits over previous
implementations of FID.

4.1.3 Hyper-parameters

The number of encoder layers in the MMoT is
12, while the number of decoder layers is 24.
We use this asymmetrical structure because the
encoder is mainly used to extract features, while
the decoder is responsible for more complex map-
ping, i.e., converting the input features into the
final image output, and this design can greatly
reduce the number of parameters. Encoders for
different modalities have the same number of
layers. Both encoders and decoders share an archi-
tecture of 12 attention heads and an embedding
dimension of 768. All training images in COCO-
Stuff and LHQ are randomly cropped to 256×256
in our main experiments and ablation studies. We
use the AdamW (Loshchilov & Hutter, 2017) opti-
mizer with β1 = 0.9, β2 = 0.95 and the weight
decay is set to be 0.01. We use a batch size of 64
for training all our models and set the learning
rate to be 4.5e-6, and all the models are trained
for 300 epochs on 8 A100 GPUs.

4.2 Comparisons with Existing
Methods

We compare MMoT with one of the state-of-
the-art MCIS methods PoE-GAN (X. Huang et
al., 2022) and also with a wide range of UCIS

Table 1 Comparison on COCO-Stuff (256×256)

(a) Text to Image (b) Bounding boxes to Image

Method FID ↓ Clean-FID ↓ Method FID ↓ Inception Score ↑

- - - LostGAN-V2 42.6 18.0±0.50
- - - OC-GAN 41.7 17.8±0.00
DF-GAN - 45.2 VQGAN+T 33.7 -
DM-GAN+CL - 29.9 LAMA 31.1 -
VQGAN+T* 27.8 28.1 Context-L2I 29.56 18.57±0.54
PoE-GAN - 20.5 TwFA 22.1 24.3±1.04

MMoT(Ours) 17.9 17.8 MMoT 19.2 26.7±0.50

(c) Segmentation masks to Image (d) Sketch to Image (e) All†

Method FID ↓ Clean-FID ↓ Method FID ↓ Clean-FID ↓ Clean-FID ↓

pix2pixHD 111.5 - - - - -
SPADE 22.6 22.1 pix2pixHD* 44.4 46.2 -
VQGAN+T 22.4 21.6 SPADE* 78.8 80.3 -
OASIS 17.0 19.2 VQGAN+T* 33.9 34.4 -
PITI 15.8 - PITI 20.3 - -
PoE-GAN - 15.8 PoE-GAN - 25.5 13.6

MMoT 12.7 12.9 MMoT 23.1 23.9 12.6

We evaluate models conditioned on different modalities
(i.e., text, bounding boxes, segmentation masks, sketch).
The best scores are highlighted in bold and the second
best ones are underlined. For fair comparisons, all the
results are taken from the relative papers. ‘-’ means the
related value is unavailable in their papers. ‘*’ denotes
results on samples from retrained models with the official
implementation. All† means image synthesis conditioned
on text+segmentation masks+sketch.

approaches in the unimodal setting. Since M6-
UFC (Z. Zhang et al., 2021) and Composer
(L. Huang et al., 2023) are performed on different
MCIS datasets and their codes are unavailable till
our submission, we did not make direct compar-
isons with them.

4.2.1 Text to image synthesis

Text-to-Image is designed to render a realistic
image from a text description, which is a rather
challenging task that dominates image genera-
tion. It is also a cross-modal generation task,
which requires the model to be able to generate
images that meet people’s expectations based on
understanding the objects and their relationships
described in the text. For text-to-image synthe-
sis, we compare with DF-GAN (Tao et al., 2020),
DM-GAN+CL (Ye, Yang, Takac, Sunderraman,
& Ji, 2021), VQGAN+T (Esser et al., 2021) and
PoE-GAN (X. Huang et al., 2022) on COCO-
Stuff. Since text annotation is not available in
LHQ, we compare with VQGAN+T (Esser et al.,
2021), MaskGIT (Chang et al., 2022), and NUWA-
Infinity (Wu, Liang, Hu, et al., 2022) in the
language-free setting, i.e., language annotations
are unavailable and we take the pseudo-labelling
texts as condition. The quantitative results of



IJCV 2023 Submission

MMOT 11

A kitchen with a 

counter and a table 

with chairs.

A plate holds a 

good size portion 

of a cooked, mixed 

dish that includes 

broccoli and pasta.

Text Ground truth DF-GAN DM-GAN+CL PoE-GAN Ours

Fig. 4 Qualitative comparison of text-to-image synthesis results on COCO-Stuff. More results are demonstrated in A.1
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Bounding boxes Ground truth LostGAN-V2 Context-L2I TwFA Ours

Fig. 5 Qualitative comparison of bounding boxes-to-image synthesis results on COCO-Stuff. More results are demonstrated
in A.1

text-to-image synthesis on COCO-Stuff and LHQ
are reported in Table 1 (a) and Table 2 (a), respec-
tively. In Figure 4, we also provide several qual-
itative comparisons. MMoT has comparable per-
formance, both quantitatively and qualitatively.

4.2.2 Bounding boxes to image
synthesis

Bounding boxes to image generation aims to gen-
erate photo-realistic conditioned on specified lay-
outs which consists of a set of object bounding
boxes and corresponding categories. Compared
with text-to-image synthesis, such a layout pro-
vides a simple sketch of the image, which makes
the generation more user-friendly and control-
lable, but this also reduces the diversity of gener-
ated images to some extent. For bounding-boxes-
to-image generation, we compare with LostGAN-
V2 (Sun & Wu, 2021), OC-GAN (Sylvain et al.,
2021), VQGAN+T (Esser et al., 2021), LAMA (Li

et al., 2021), Context-L2I (S. He et al., 2021) and
TwFA (Z. Yang et al., 2022). The performance of
several methods for bounding boxes to image syn-
thesis on COCO-Stuff is evaluated quantitatively
and qualitatively. The quantitative results are
reported in Table 1 (b), while several qualitative
comparisons are shown in Figure 5. The evalu-
ations demonstrate that MMoT achieves better
performance compared to the other methods.

4.2.3 Segmentation to image synthesis

The goal of segmentation to image synthe-
sis is to generate a full-color image from a
grayscale segmentation mask, where each pixel
in the mask corresponds to a specific object or
region in the image. For segmentation masks-to-
image synthesis, we compare with pix2pixHD (T.-
C. Wang et al., 2018), SPADE (Park et al., 2019),
VQGAN+T (Esser et al., 2021), OASIS (Sushko
et al., 2022), PITI (T. Wang et al., 2022) and



IJCV 2023 Submission

12 MMOT

Segmentation mask Ground truth SPADE OASIS PoE-GAN Ours

Fig. 6 Qualitative comparison of segmentation-to-image synthesis results on COCO-Stuff. More results are demonstrated
in A.1

Sketch Ground truth Pix2PixHD SPADE VQGAN+T Ours

Fig. 7 Qualitative comparison of sketch-to-image synthesis results on COCO-Stuff. More results are demonstrated in A.1

PoE-GAN (X. Huang et al., 2022). Table 1 (c)
and Table 2 (b) present the quantitative results of
segmentation-to-image synthesis on COCO-Stuff
and LHQ, respectively. Figure 6 provides sev-
eral qualitative comparisons. Both the quantita-
tive and qualitative evaluations show that MMoT
outperforms the other methods.

4.2.4 Sketch to image synthesis

The same as segmentation to image synthe-
sis, converting a sketch to an image is also
an image-to-image translation task that involves
creating an image from a rough, hand-drawn
sketch or line drawing. This task can be chal-
lenging because sketches often lack detail, texture,
and color information, and require a model to
infer these missing details to generate a realistic
image. For sketch-to-image generation, we com-
pare with pix2pixHD (T.-C. Wang et al., 2018),
SPADE (Park et al., 2019), VQGAN+T (Esser

et al., 2021), PITI (T. Wang et al., 2022) and
PoE-GAN (X. Huang et al., 2022). Table 1 (d)
and Table 2 (c) show the quantitative results
of sketch-to-image synthesis on COCO-Stuff and
LHQ, respectively. Additionally, Figure 7 presents
several qualitative comparisons. The evaluations
indicate that MMoT performs better than the
other methods, both in terms of quantitative
metrics and qualitative comparisons.

Sect. 4.2.1 to Sect.4.2.2 demonstrates MMoT’s
unimodal conditional image generation capabil-
ities. Surprisingly, MMoT achieves comparable
performance with unimodal methods specifically
designed for that modality on both datasets. In
Figure 4 to Figure 7, we found that MMoT is
robust to different input modalities and can pro-
duce photo-realistic images of refiner textures
(e.g., pasta, bus, and building), clearer structures
(e.g., giraffe, bear, and car), and more reasonable
interactions (e.g., the reflection on the bus win-
dows, the car’s shadow on the ground). It is worth
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Table 2 Comparison on LHQ (256×256)

(a) Text to Image

Method FID ↓ Clean-FID ↓ Inception Score ↑

VQGAN+T 12.71 12.78 4.61
MaskGIT† 24.33 - 4.61
NUWA-Infinity† 9.71 - 4.98

MMoT(Ours) 11.38 11.46 4.94 ± 0.19

(b) Segmentation masks to Image

Method FID ↓ Clean-FID ↓ Inception Score ↑

pix2pixHD 36.52 41.00 3.42±0.10
SPADE 25.47 26.70 3.71±0.12
VQGAN+T 14.92 15.00 4.42±0.11

MMoT 11.87 11.98 4.43 ± 0.13

(c) Sketch to Image

Method FID ↓ Clean-FID ↓ Inception Score ↑

pix2pixHD 32.19 36.23 3.51±0.13
SPADE 35.83 36.35 2.98±0.07
VQGAN+T 13.91 13.9 4.13 ± 0.21

MMoT 11.68 11.76 4.26 ± 0.09

We evaluate models conditioned on different modalities
(i.e., text, segmentation masks, sketch). The best scores
are highlighted in bold and the second best ones are
underlined. All the results are on samples from retrained
models with the official implementation. ‘†’ denotes results
taken from the relative papers which trained on LHQC
with 1024×1024 resolution. ‘-’ means the related value is
unavailable in their papers.

noting that, unlike unimodal conditional synthesis
models, MMoT supports the combination of many
different types of inputs.

4.2.5 Multimodal conditional image
synthesis

As mentioned earlier, unimodal conditional image
generation supports only one type of condition-
ing information. To make the generation more
flexible and controllable, multimodal conditional
image generation can synthesize images condi-
tioned on multiple types of modality inputs. As
illustrated in Table 1 (e), we also obtain better
results than PoE-GAN when conditioned on All†

(i.e., text + segmentation masks + sketch). It is
worth noting that, since PoEGAN is trained with
only three modalities, we also test our MMoT on
these modalities. It could be a little bit unfair but
has some reference significance.

Overall, when conditioned on a single modal-
ity, the superiority of the proposed MMoT is vali-
dated on both quantitative metrics and qualitative

visual comparison. The improved performance of
unimodal conditional image synthesis indicates
the robustness of the multistage token-mixer and
the balanced optimization of each modality. In
addition, MMoT also outperforms previous state-
of-art MCIS method PoE-GAN when conditioned
on multimodal conditional inputs.

4.3 Image Synthesis Conditioned on
the Compositions of Inputs

The most exciting ability of MMoT is that it
can synthesize imagery images according to the
compositions of a set of input modalities.

In Figure 8, we show some multimodal con-
ditional samples generated by our MMoT. As
illustrated in Figure 8 (a), using segmentation
masks to give the coarse layout of semantic classes
(e.g., sky, trees, and grass) is easy but it is impos-
sible to specify the color of an object, however,
with the help of text, the color of clouds can be
defined. Similarly, sketch allow us to describe the
shape (e.g., ridges of mountains) and texture (e.g.,
ripples of water) of an object with simple strokes,
but only under the control of the text can the
state (e.g., snow or stone mountain, frozen lake
or dirty river) and category (e.g., river, sand or
grassland) of the object be given. Moreover, as
shown in Figure 8 (c) and (d), MMoT can synthe-
size realistic and diverse images when conditioned
on the compositions of segmentation masks and
sketch/bounding box layout.

4.4 Ablation Study

In Table 3, we analyze the importance of differ-
ent components of MMoT. The settings in both
studies are similar to the comparison with exist-
ing methods in Table 1. The baseline model is the
vanilla encoder-decoder transformer, which simply
concatenates the features outputted by respec-
tive encoders while performing modality dropout.
Each row corresponds to a model trained with the
additional element.

Compared with the baseline, when adding the
multistage token-mixer, the performances of uni-
modal conditions and multiple conditions have
gained significant improvement, which indicates
the robustness on missing-modality and the effec-
tiveness of the fusion of the multistage token-
mixer. And since multimodal balanced loss can
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Snow mountains near a frozen lake Stone mountains near the dirty river Mountains near sand Mountains near grassland

Pink clouds in the skyWhite clouds in the sky Dark clouds in the sky Sunset clouds in the sky[…] in the sky

[…] mountains near […]

Morning glow in the sky

Mountains near flowers

grasssea

sand

(a) Segmentation masks + Text -> Image

(b) Sketch + Text -> Image

(c) Segmentation masks + Sketch  -> Image

(d) Segmentation masks + Bounding box layout  -> Image

Fig. 8 Samples of composed multimodal conditional image synthesis generated by MMoT. We show compositions of differ-
ent modalities: (a) segmentation masks and text; (b) sketch and text; (c) segmentation masks and sketch; (d) segmentation
masks and bounding box layout. MMoT can synthesize reasonable images leveraging conditional information conveyed by
different modalities. More results are demonstrated in A.2

Table 3 Ablation on COCO-Stuff (256×256)

Text Bounding boxes Segmentation masks Sketch All

Methods FID ↓ Clean-FID ↓ FID ↓ Inception Score ↑ FID ↓ Clean-FID ↓ FID ↓ Clean-FID ↓ FID ↓ Clean-FID ↓
Base 55.93 56.27 26.27 22.50±0.67 20.07 20.43 32.91 33.73 13.43 13.68
+ Multistage Token-Mixer 31.19 31.40 21.36 24.18±0.59 14.52 14.77 23.75 24.37 12.79 13.04
+ Multimodal Balanced Loss 23.04 23.32 20.65 24.90±0.57 13.24 13.43 23.08 23.70 12.23 12.44
+ Multimodal Guidance 17.91 17.83 19.24 26.67±0.50 12.73 12.91 23.42 23.93 11.75 11.73

The best scores are highlighted in bold and the second best ones are underlined.

facilitate the optimization of each modality, uni-
modal conditional image synthesis achieved fur-
ther improvement, especially for text-to-image
generation. We note that multimodal guidance is
useful for text-to-image synthesis but not essential
for each input condition.

4.5 Qualitative Analysis

In Figure 9, we show some visualizations of
the underlying process, including cross-attention
maps, divergence maps, and combination-weight
maps.
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(c) Combination-weight maps
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Fig. 9 Visualizations of cross attention maps, divergence
maps, and combination weight maps.

4.5.1 Cross-attention maps

Part (a) in Figure 9 is the average attention score
maps across all transformer decoder layers. We
show the cross-attention map conditioned on seg-
mentation masks and sketches. It is noted that
when generating the specific areas of an image
(e.g., the head or thorax of a bird), high respon-
siveness is observed in the corresponding areas of
the segmentation map or sketch.

4.5.2 Divergence map

Part (b) in Figure 9 is the distribution of the
JS divergence calculated between unimodal condi-
tional logits and unconditional logits over different
generated images, which contain rich semantic
relations reflecting the influence of different condi-
tions. So injecting the divergence map as composi-
tion prior to controlling the value of the guidance
scale during the sampling process can lead to more
spatially coordinated images.

4.5.3 Combination-weight maps

The key to effective fusion is to calculate accurate
combination weights, which represent the influ-
ences of each input modality. The combination
weights in MMoT are related to attention scores

calculated in Eq. (8). Part (c) in Figure 9 shows
the combination-weight maps of individual modal-
ities in layers 1, 13, and 21, which show that the
modality at different semantic levels contributes to
different layers, i.e., text and bbox have more con-
tributions in the higher layer, while segmentation
and sketch play a role in all layers, especially in
the earlier layer. It also illustrates that the special
token [PULSE] within the multistage token-mixer
can adaptively detect the influences of modality
tokens across the generated image.

5 Conclusions

In this paper, we focus on the challenging Com-
posed Multimodal Conditional Image Synthesis
(CMCIS) task and propose a novel Mixture-of-
Modality-Tokens Transformer (MMoT). Towards
two severe issues of CMCIS, i.e., modality coor-
dination and imbalance problems, we introduce a
multistage token-mixer, multimodal balanced loss,
and divergence-driven sampling guidance to fully
exploit the cooperativity across different modal-
ities. Extensive experiments on the COCO-Stuff
and LHQ datasets demonstrate that the proposed
MMoT successfully generates high-quality and
faithful images conditioned on composed multi-
modal signals, and achieves superior performance
over most existing UCIS and MCIS models.
Limitations. Since our framework is based on the
autoregressive Transformer, it suffers from limited
inference speed. In the future, we will attempt to
adapt the proposed module and training/testing
schemes to other deep neural frameworks and hope
to produce more realistic, high-quality, and diverse
results.
Broader Impacts. The proposed composed mul-
timodal image synthesis offers unprecedented fine-
grained generation capabilities, which lead to both
positive and negative societal impacts. Multi-
modal control signals as input for synthesis greatly
improve the flexibility of user interaction and
ease the use of deep generative models. However,
the increasing generation capabilities also make it
easier to synthesize desired images for malicious
purposes, i.e., the misuse of fake or nefarious infor-
mation. In the future, sufficient guardrails, access
control, and detection techniques are encouraged
to minimize the risk of misuse.
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Data Availability Statement. The data that
support the findings of this study are available
from the corresponding author upon reasonable
request.

Appendix A More
Qualitative
Results

A.1 Qualitative Comparisons with
UCIS Models

In Figure A1 to A4, we show additional quali-
tative comparisons with a wide range of UCIS
models when conditioned on text, segmentation
mask, sketch, and bounding boxes, respectively.
Competitive visual results compared with UCIS
models specially designed for a single modality
indicate MMoT is robust to different modalities.

A.2 Qualitative CMCIS Examples

Figure A5 to A9 show that MMoT can gener-
ate high-quality, faithful, and diverse images when
conditioned on complex compositions of two or
three different modalities.

In Figure A5 to A7, we also show more visual
comparisons with PoE-GAN when conditioned
on compositions of text+segmentation mask,
text+sketch, and segmentation mask+sketch,
respectively. The modality coordination problem
and the modality imbalance problem are com-
mon in MCIS models when conditioned on com-
plex multimodal conditions. In contrast, MMoT
addresses both issues and can synthesize high-
quality and faithful images.
Modality coordination problem. The modal-
ity coordination problem is caused by the non-
adaptive fusion of fine-grained information across
multiple modalities. As illustrated in Figure A7,
when PoE-GAN synthesizes an image, the gen-
erated contents from the sketch condition are
incorrectly composed with the generated contents
from the segmentation mask condition.
Modality imbalance problem. The modality
imbalance problem is caused by the imbalanced
distribution of each modality in datasets. As illus-
trated in Figure A5 and A6, PoE-GAN tends to
ignore text inputs when generating images.
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Fig. A1 Additional qualitative comparison of text-to-image synthesis on COCO-Stuff.
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Segmentation Ground truth SPADE OASIS PoE-GAN Ours

Fig. A2 Additional qualitative comparison of segmentation mask-to-image synthesis on COCO-Stuff.



IJCV 2023 Submission

MMOT 19

Sketch Ground truth Pix2PixHD SPADE VQGAN+T Ours

Fig. A3 Additional qualitative comparison of sketch-to-image synthesis on COCO-Stuff.
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Bounding Boxes Ground truth LostGAN-V2 Context-L2I TwFA Ours

Fig. A4 Additional qualitative comparison of bounding boxes-to-image synthesis on COCO-Stuff.
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surrounded by 

colorful clouds.

A beach with 

white sand,  and 

the rising sun in 

the sky.

Condition #1 Condition #2 PoE-GAN Ours #1 Ours #2

Fig. A5 Examples of composed multimodal conditional image synthesis when conditioned on text and segmentation mask.
From left to right: text, segmentation, a random sample from PoE-GAN, and two random samples from our MMoT. PoE-
GAN always struggles with the modality imbalance problem. In contrast, MMoT can balance the information of the two
modalities to synthesize images.
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Condition #1 Condition #2 PoE-GAN Ours #1 Ours #2

A tree stands in 

the desert.

A tree stands on 

the river.

The rising sun in 

the sky.

A small dirt road 

runs through the 

forest

A lake in the 

gravel land with 

white clouds in 

the blue sky.

Ocean waves 

crash into rocks.

Fig. A6 Examples of composed multimodal conditional image synthesis when conditioned on text and sketch. From left to
right: text, sketch, a random sample from PoE-GAN, and two random samples from our MMoT. PoE-GAN always struggles
with the modality imbalance problem. In contrast, MMoT can balance the information of the two modalities to synthesize
images.
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Conditions PoE-GAN Ours #1 Ours #2 Ours #3

Fig. A7 Examples of composed multimodal conditional image synthesis when conditioned on segmentation and sketch.
From left to right: segmentation mask, sketch, a random sample from PoE-GAN, and three random samples from our
MMoT. PoE-GAN always struggles with the modality coordination problem. In contrast, MMoT can generate more spatially
coordinated images.
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Condition #1 Condition #2 Samples #1 Samples #2 Samples #3

A small airplane 

is flying in the 

sky.

A kitchen and 

dining area 

decorated in 

white.

A passenger bus 

pulling up to the 

side of a street.

A dog following 

a man on his 

horse in a field

field.

An urban 

intersection with 

stoplights on a 

cloudy day.

A white boat 

some green hills 

and water.

Fig. A8 Examples of composed multimodal conditional image synthesis. We show three random samples from MMoT
conditioned on compositions of different modalities (from top to bottom: text+segmentation mask, text+sketch, and
text+bounding boxes).
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Conditions Samples #1 Samples #1 Samples #2

zebra

grass

person

tress

tress

clouds

grass

Fig. A9 Examples of composed multimodal conditional image synthesis. We show three random samples from MMoT con-
ditioned on compositions of different modalities (from top to bottom: segmentation mask+sketch, bounding boxes+sketch,
and segmentation mask+sketch+bounding boxes).
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