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Abstract

Existing multimodal conditional image synthesis (MCIS) methods generate images conditioned on
any combinations of various modalities that require all of them must be exactly conformed, hindering
the synthesis controllability and leaving the potential of cross-modality under-exploited. To this end,
we propose to generate images conditioned on the compositions of multimodal control signals, where
modalities are imperfectly complementary, i.e., composed multimodal conditional image synthesis
(CMCIS). Specifically, we observe two challenging issues of the proposed CMCIS task, i.e., the modal-
ity coordination problem and the modality imbalance problem. To tackle these issues, we introduce a
Mixture-of-Modality-Tokens Transformer (MMoT) that adaptively fuses fine-grained multimodal con-
trol signals, a multimodal balanced training loss to stabilize the optimization of each modality, and a
multimodal sampling guidance to balance the strength of each modality control signal. Comprehensive
experimental results demonstrate that MMoT achieves superior performance on both unimodal condi-
tional image synthesis (UCIS) and MCIS tasks with high-quality and faithful image synthesis on com-
plex multimodal conditions. The project website is available at https://jabir-zheng.github.io/MMoT.
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1 Introduction

With the maturity of image synthesis quality, we
start focusing on improving its controllability to
generate specific images as we expected. To con-
trol the image content, various control signals from

different modalities have been proposed, including
texts (Zhou et al., 2021), sketches (T.-C. Wang
et al., 2018), segmentation masks (T.-C. Wang et
al., 2018), and bounding box layouts (Sun & Wu,
2021), where each of them has its own advantages,
e.g., texts usually describe attributes of objects
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Fig. 1 CMCIS relaxes the stringent requirements for
inputs. The input can be the composition of multiple
complementary modalities ( e.g., text, sketch, segmentation
mask, and bounding boxes), and our MMoT can generate
reasonable results leveraging all inputs.

and style of images, segmentation masks depict
the environmental contexts, and sketches/layouts

are able to control the position and size of each
object.

The pioneering methods mostly focus on uni-
modal conditional image synthesis UCIS ) that
generates images with a single unimodal con-
trol signal, e.g, text-to-image (Ramesh, Dhariwal,
Nichol, Chu, & Chen, 2022; Ramesh et al., 2021;
Saharia et al.,, 2022; Yu et al., 2022; Zhou et
al., 2021), sketch-to-image (Esser, Rombach, &
Ommer, 2021; Park, Liu, Wang, & Zhu, 2019;
T. Wang et al., 2022; T.-C. Wang et al., 2018),
segmentation-to-image (Esser et al.,, 2021; Park
et al., 2019; Sushko et al., 2022; T. Wang et al.,
2022; T.-C. Wang et al.,, 2018), and layout-to-
image (S. He et al.,, 2021; Li, Wu, Koh, Tang,
& Sun, 2021; Sun & Wu, 2021; Sylvain, Zhang,
Bengio, Hjelm, & Sharma, 2021; Z. Yang, Liu,
Wang, Yang, & Tao, 2022; Zhao, Yin, Meng,
& Sigal, 2020). Despite the great progress they
have achieved, those methods fail to fully uti-
lize the information from dierent modalities,
thus hindering their controllability and appli-
cations in real scenarios. To this end, recent
works (X. Huang, Mallya, Wang, & Liu, 2022; Li
et al.,, 2022; Z. Zhang et al., 2021) propose to
generate images conditioned on any combinations
of various modalities, e.g, sketch+segmentation
or text+segmentation, termed multimodal con-
ditional image synthesis (MCIS ). However, the
current MCIS strictly requires every unimodal sig-
nal must be exactly conformed with each other,
leaving the potential of cross-modality under-
exploited. Additionally, it is unfriendly to the
majority of users without a professional painting
background.

In this paper, we propose a more challenging
task, namely Composed Multimodal Conditional
Image Synthesis CMCIS ), which allows each
unimodal signal to be imperfectly complemen-
tary and the nal expectation of images to be
composed of all modality signals. For example,
as illustrated in Figure 1, the user can generate
a desired image by using a variety of dierent
modalities to describe di erent components of the
scene,i.e., drawing a sketch of the boat, lling
the sea with a segmentation mask, using a bound-
ing box to decide the size and location of the
airplane, and the text giving high-level semantic
information such as dusk.

Unfortunately, existing MCIS methods, no
matter GAN-based (X. Huang et al., 2022),
Transformer-based (Li et al., 2022; Z. Zhang et al.,
2021), or di usion-based (L. Huang et al., 2023),
are not able to handle the new challenging CMCIS
task. As illustrated in Figure 2, we observe two
main issues of existing MCIS methods:(i) the
modality coordination problem due to the non-
adaptive fusion on ne-grained information across
multiple modalities, e.g, the tree incorrectly com-
posed with the texture of the mountain in Figure 2
(a); and (ii) the modality imbalance problem that
caused by the imbalanced distribution of each
modality in datasets, i.e., di erent modalities tend
to converge at di erent rates in Figure 2 (b).

Speci cally, the modality coordination prob-
lem arises from the imperfectly complementary of
input multi-modality signals, where each image
region may involve a dierent combination of
modality (e.g, sky by segmentation masks, tree
by sketches+segmentation masks in Figure 2 (a)),
i.e., the proposed CMCIS task. Such imperfec-
tion demands dynamic coordination of modali-
ties (i.e., adaptive fusion) to adapt to varying
image regions. The existing methods have lim-
itations in e ectively capturing the ne-grained
coordination among modalities adapted to dif-
ferent regions (.e., non-adaptive fusion). They
either represent each modality as a single latent
vector, thereby sacri cing the regional speci city
of modality coordination, or take all modality
signals as input then simultaneously learn cross-
modal and cross-region interactions, making it
challenging to achieve ne-grained adaptation.

And the modality imbalance problemarises due
to the varying levels of information density exhib-
ited by di erent modalities, e.g. text tokens being
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Fig. 2

(a) Modality coordination problem: incorrect coordination of multiple modalities,

e.g., the tree incorrectly composed

with the mountain. (b) Modality imbalance problem: various modalities tend to converge at di erent rates and converge to

di erent endpoints.

high density, while segmentation tokens being
lower. Such dierences over the whole dataset
lead to imbalanced distribution of each modal-
ity. During training, the imbalance further a ects
convergence di culty (K. He et al., 2022), which
manifests as di erent modalities converging at dif-
ferent rates and to di erent endpoints (e.g, sketch
converges faster than other modalities in Figure 2
(b) because it describes more detailed conditional
information and is therefore easier to optimize).
However, existing methods treat each modality
equally thus su ering from the issue of modality
imbalance, particularly in the proposed CMCIS
task.

To tackle the former modality coordination
problem, we propose the Mixture-of-Modality-
Tokens Transformer (MMoT) to fully exploit
the cooperativity across modalities. Speci cally,
MMoT uses multiple encoders to model the intra-
modal interaction. Then, modality-speci ¢ cross-
attention is adopted to inject multimodal con-
ditional information into the decoder. Finally,
the key module multistage token-mixer adaptively
fuses multimodal conditioning information with
the masked cross-attention mechanism. To tackle
the modality imbalance problem, we propose a
multimodal balanced loss to adaptively control the
optimization of each modality during the training
phase, as well as a multimodal sampling guid-
ance during the sampling phase to control the
in uences of dierent modalities and introduce
divergence maps to the sampling process to realize
more spatially coordinated generation.

To the best of our knowledge, we are the rst
to focus on speci ¢ challenges of the CMCIS task,
and our contributions are summarized as follows:

" We propose a new challenging task, namely
Composed Multimodal Conditional Image Syn-
thesis, which allows users to input various
control signals that are not perfectly comple-
mentary.

We propose the Mixture-of-Modality-Tokens
Transformer (MMoT) for CMCIS, which adap-
tively fuses ne-grained conditional signals
across di erent modalities.

We introduce the multimodal balanced train-
ing loss and the divergence-driven sampling
guidance to alleviate the imbalance problem
between multiple modalities in CMCIS.

The proposed MMoT accomplishes high-quality
image synthesis conditioned on complex com-
positions of multiple modalities and achieves
new state-of-the-art performance on COCO-
stu (Caesar, Uijlings, & Ferrari, 2018; Lin et
al., 2014) and LHQ (Skorokhodov, Sotnikov, &
Elhoseiny, 2021).

2 Related Work
2.1 Unimodal Conditional Image
Synthesis

Deep generative models are a family of tech-
nigues in which deep neural networks are
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trained to simulate the distribution of train-
ing data. (Bond-Taylor, Leach, Long, & Will-
cocks, 2021). There are a variety of generative
models have been proposed, such as energy-
based models (LeCun, Chopra, Hadsell, Ranzato,
& Huang, 2006), normalizing ows (Kobyzev,
Prince, & Brubaker, 2020; Papamakarios, Nalis-
nick, Rezende, Mohamed, & Lakshminarayanan,
2021), variational autoencoders (VAEs) (Kingma
& Welling, 2014; Sohn, Lee, & Yan, 2015), gen-
erative adversarial networks (GANs) (Goodfellow
et al., 2020; Mirza & Osindero, 2014; C. Yang,
Shen, & Zhou, 2021), generative image transform-
ers (GITs)(Chang, Zhang, Jiang, Liu, & Freeman,
2022; Esser et al., 2021) and denoising di usion
models (Dhariwal & Nichol, 2021; Ho, Jain, &
Abbeel, 2020). Generative models typically make
trade-o s in quality, sampling speed, and diversity.

GIT is one of the more popular models of
late, especially for uni-modal conditional gen-
eration (Gafni et al, 2022; Yu et al, 2022)
as the advance in discretizing multi-modalities
and the powerful sequence modeling capabili-
ties. Recently, large-scale text-to-image generative
models (Ramesh et al., 2022; Saharia et al., 2022;
Yu et al., 2022) have made explosive processes and
achieved unprecedented superior results.

Traditional GITs (M. Chen et al.,, 2020;
Child, Gray, Radford, & Sutskever, 2019; N. Par-
mar et al.,, 2018) treat image synthesis as a
\pixel-by-pixel" autoregressive sequence genera-
tion task with the help of the self-attention mech-
anism (Vaswani et al., 2017). However, as the
computation requirement is highly correlated with
the sequence length, sampling a high-resolution
image may be a challenging endeavor. The pro-
posed Vector Quantised model (Van Den Oord,
Vinyals, et al.,, 2017) signi cantly reduces the
processing burden and enables the sampling of
high-resolution images based on GITs (Esser et
al., 2021; Ramesh et al., 2021). And as the scale of
the model increases, so does the ability to generate
the model (Yu et al., 2022).

The design of model architecture is another
point of interest. Instead of using decoder-only
language models, recent research (Wu, Liang, Ji,
et al., 2022; Yu et al., 2022) employs an encoder-
decoder transformer for conditional image syn-
thesis and achieves promising results. Our work

proposed a novel encoder-decoder-based architec-
ture that decouples intra-modal interaction and
fusion.

2.2 Multimodal Conditional Image
Synthesis

Multimodal conditional image synthesis has
attracted increasing attention recently. Represen-
tative work includes M6-UFC (Z. Zhang et al.,
2021) and PoE-GAN (X. Huang et al., 2022).

M6-UFC is a Bert-based framework based on
the two-stage image synthesis method (M. Chen
et al., 2020; Esser et al.,, 2021; Ramesh et al.,
2021; Razavi, Van den Oord, & Vinyals, 2019;
Van Den Oord et al., 2017). In M6-UFC, the mul-
timodal conditional inputs and generated image
are transformed into a sequence of tokens to
be processed by the unidirectional Transformer
decoder (Vaswani et al., 2017). The advantages of
M6-UFC are that it uni es various modalities in a
universal form and can thus easily extend to more
guidance modalities. However, it employs concate-
nation to combine multimodal user inputs, and
intra-modal interaction is interlaced with fusion;
as a result, it may struggle with handling missing
modalities (X. Huang et al., 2022; Ma, Ren, Zhao,
Testuggine, & Peng, 2022).

POE-GAN is GANs based method with the
multiscale projection discriminator (Liu, Yin,
Shao, Wang, et al., 2019; Miyato & Koyama, 2018;
T.-C. Wang et al., 2018). In PoE-GAN, condi-
tional information from multiple modalities is rst
encoded into a uni ed latent space and then fused
using product-of-experts modeling (Hinton, 2002).
The advantages of POE-GAN are that it decouples
intra-modal interaction and fusion, and is more
robust to missing modalities. However, conditional
GANs are known to be susceptible to mode col-
lapse (Isola, Zhu, Zhou, & Efros, 2017; Odena,
Olah, & Shlens, 2017) and spatial information is
lost in the latent space of POE-GAN. MMoT inher-
its the advantages of the above two works and
is able to produce reasonable outputs even with
counterfactual condition modalities.

Recently, there have been some meth-
ods (L. Huang et al.,, 2023; Mou et al.,, 2023;
L. Zhang & Agrawala, 2023) that attempt to
introduce more control signals to large-scale Text-
to-Image pre-trained models €.g., Stable dif-
fusion (Rombach, Blattmann, Lorenz, Esser, &
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Ommer, 2022)) to achieve multimodal conditional
image generation. However, such methods are
text-centric, so it is di cult to leverage the impact

of various imperfectly complementary modality in
the case of our proposed CMIS task.

3 Method

The goal of CMCIS is to train a single model
that approximates image distributions conditional
on any combination of feasible modalities. Math-
ematically, the objective is to learn p(xjC) when
given a dataset of imagesx paired with a con-
ditional input C which consists of M di erent

Our model follows an encoder-decoder struc-
ture, consisting of M encoders for modeling
intra-modal interaction and a common decoder
for fusion among multi-modalities, as shown in
Figure 3. Our proposed methods are described in
detail later, comprised of 1) describing the two-
stage transformer-based framework, 2) introduc-
ing the Mixture-of-Modality-Token transformer
with a multistage token-mixer module, 3) training
with multimodal balanced loss, and 4) sampling
with divergence-driven guidance.

3.1 Preliminary

In this section, we review the two-stage
transformer-based framework (M. Chen et al.,
2020; Esser et al., 2021; Ramesh et al., 2021;
Razavi et al., 2019; Van Den Oord et al., 2017)
for image synthesis. At the rst stage, a convo-
lutional model consisting of an encoderE and
a decoder D is learned, such that, an image
x 2 R® H W can be represented as a collection
of code-wordszy 2 R": " W with code from a
learned, discrete codebookZ = fz.gk., , where
n, is the dimensionality of codes,zz 2 R": is
the k™ code-word, andK is the number of code-
words. More precisely, the convolutional encoder
E rst encodes the x as2 = E(x) 2 R"z "W
and then an element-wise quantization q() is
applied to each spatial elementzf 2 R": to
obtain the closest discrete code-workz, i.e.,
q(%; ) = argmin,, ,; k2 z«k. At last, a given
image x can be approximated by a convolutional
decoder D, i.e., # = D(zq). Overall, the rst

stage can be denoted by:

zq = q(E(x)); % = D(zq); (1)

the convolutional model and the codebook can be
trained via the loss function:

Lvo(E;D; Z) = kx  Rk?+ ksgE(X)]  zqk3
+ ksglzq] E(X)K3;
2)

where sg[] denotes the stop-gradient operation.

At the second stage, the quantized encoding
of an imagex can be transformed into a sequence
19" W,
Therefore, image generation can be formulated as
autoregressive sequence generation modeled with
a transformer. The transformer learns to predict
the distribution p(sjjs< ) of possible next token
si given preceding tokenss.; . Then the likeli-
hood of th?gfull representation can be computed
as p(s) = , p(sijs«i ). The transformer can be
trained by maximizing the log-likelihood:

Lt = Ex poy[ logp(s)]: 3)

3.2 Mixture-of-Modality-Tokens
Transformer

We propose a novel framework, namely Mixture-
of-Modality-Tokens Transformer (MMoT) for
adaptive fusion among multimodal information.

3.2.1 Modality representation in
uni ed-form

In this paper, we consider four commonly used
input conditions, including text, segmentation
mask, sketch, and bounding box layout. For visual
modalities, i.e., image, segmentation masks, and
sketch, we quantize it with the help of dis-
crete VAE, e.g, VQGAN (Esser et al.,, 2021).
For bounding boxes layout, we follow the same
tokenization method as in (Jahn, Rombach, &
Ommer, 2021). And CLIP (Radford et al., 2021)
is our solution for tokenizing text modalities.
Speci cally, to unify the embeddings of dif-
ferent modalities including image, segmentation
masks, sketch, bounding boxes, and text, we treat
all of them as language-like tokens and embed the
tokens to the latent spaceUy, 2 R' 9, wherem is
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Fig. 3 The overview of the Mixture-of-Modality-Tokens Transformer for CMCIS task. Given an image and multiple modal-
ities, including text, segmentation masks, sketch, and bounding boxes, we tokenize them into discrete tokens with di erent
tokenizers, and then (a) model intra-modal interaction with modality-speci ¢ encoders; (b) inject multimodal conditioning
information into the decoder with modality-speci ¢ cross-attention; (c) adaptively fuse conditional signals via the multistage
token-mixer. We train MMoT with multimodal balanced loss and sample with divergence-driven multimodal guidance.

used to distinguish di erent modalities, | denotes
the number of tokens andd means the dimension
of each embedding.

Given an image X 2 R® " Wi we quan-
tize it with the help of a discrete VAE, e.g.,
VQGAN (Esser et al., 2021). Speci cally, the dis-
crete VAE encodes the image to a latent space,
and maps the latent features to the closest dis-
crete tokens from the codebook image = fzkgl'f:1
with K entries. The quantized representations are

in the format of N/"'"'9 where Nimage is the

image
dimension of quantized representations. The seg-
mentation masks S 2 RM"s Ws and the sketch

K 2 R® Hx Wk can be tokenized in the same
pipeline but with dierent pre-trained discrete

VAE models. Such content of segmentation masks
and sketch in the raw space can be represented

as's 2 Nigg™9 and k 2 N9 with di er-

Given a bounding boxes layout consists of a set
of objects of their positions and category classes,
we directly tokenize it into sequential object
tokensb= f(oi;pi){Ls gwith Ng objects, whereo;
denotes thei™ object's category, andp; = [tl;; br;]
represents its top-left and bottom-right corner
positions.

For image, segmentation masks, sketch, and
bounding boxes, we feed their discrete codes to
respective embedding layers to get the continuous
representations.

As for text modalities, CLIP (Radford et al.,
2021) is our solution. A transformer-based encoder
is used to represent the discrete token sequence
into a high dimensional vector once the sentence is
tokenized with Byte-Pair Encoding (BPE). Then
we use this vector as the nal representation in
the form of R"%99, which means the text embed-
ding only occupies one token as the input to our
MMoT module. For datasets that lack correspond-
ing textual descriptions, we use image embedding
as the pseudo-text representation from CLIP as a
replacement.

In general, the representations of images can
be denoted asX 2 R'mwe d and the repre-
sentations of the conditional modality m can be
denoted in the same dimension aC,, 2 R'm ¢
but with di erent length of tokens I, and as we
discussed, the text modality contributes only one
token, wherelieyt = 1.

3.2.2 Attention mechanism

We recall the attention mechanism since it is an
important means for MMoT to achieve interac-
tion and fusion. The attention mechanism draws
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global dependencies between them with Query-
Key-Value (QKV) model, where queries Q =
WoX, keys K = Wk C and valuesV = Wy C
with the learnable weights W. Thus the attention
function can be de ned as:

Attn( X;C) = softmax (%%)V: (4)

It is worth noting that with the given condi-
tion C that di ers from the input X, the attention
mechanism is widely known as cross-attention
CA(X;C). If the condition information C is the
same as the inputX , the attention mechanism can
be expressed as AttnK; X ), which is known as
self-attention SA(X).

3.2.3 Modeling intra-modal interaction
with modality-speci c encoders

To model the intra-modal interaction for var-
ious modalities, we introduce modality-specic
encoders that project input features into an inter-
mediate representation.

Each modality encoder consists ofN self-
attention layers. Given the input features CF, (n
1) 2 Rtm D of modality min (n  1)™ layer, the
output C&(n) 2 Rt D of the n' encoder layer
can be calculated as:

Ch(n)=SA[Cr(n 1) (5)

3.2.4 Injecting multimodal
conditioning information with
modality-speci ¢ cross attention

In order to inject multimodal conditional infor-
mation into the decoder, we use modality-specic
cross-attention to fuse the image feature with each
modality feature.

Speci cally, given the input image features
X(n 1) of the (n 1) decoder layer and the
output C§ (N) of the encoder's last layer, the out-
put C4(n) 2 Rtmee D for n'" decoder layer is
given by:

X(n)=SA[X(n 1);

Cq (n) = CAL X (n); C& (N)]: ©

3.2.5 Adaptive fusion with multistage
token-mixer

After applying cross-attention, the multistage
token-mixer is proposed to fuse the modal-
ity tokens which contain conditional information
related to a speci ¢ modality. A special [PULSE]
token P within token-mixer is introduced to adap-
tively estimate the combination weights (i.e.,
attention scores) of each modality token and fuse
them with the masked cross-attention mechanism.
The combination-weight maps in Figure 9 (c)
show that [PULSE] token can e ectively evaluate
the in uences of di erent modalities in di erent
decoder layers.

Speci cally, with the output X (n) of the n"
self-attention layer and a set of outputs of the
n!" cross-attention layer, we adapt a multistage
token-mixer to fuse the conditional information
from di erent modalities and then feed the fusion
features to the subsequent decoder layers:

XY(n) = Mixer[ X (n); C4(n)]; (7)
where C is the stack of all conditional modalities,

ie., C2RM .
The Mixer function can be de ned as:

L image D

T
Mixer(X; C) := softmax (5‘9%);; (8)

where we concatenate the latent representation
of image X (n) with the stack representation C

of M modalities along the modality dimension to
form F 2 Rbmwe (M*1) D "whijle its transpose
can be denoted agFT 2 Rtmwe D (M+1) p 2

Rbtimge 1 D jg the [PULSE] token. Noted that

the random masks will be applied in the Mixer
function during the training phase, which serve
as modality dropouts to handle missing-modality
cases during inference.

3.3 Multimodal Balanced Loss

To train the MMoT, we propose Lmymp, an
improved cross-entropy loss named multimodal
balanced loss, for sequential prediction tasks to
realize balanced optimization among dierent
modalities:

Lomb = Es p(s) Ex.c, p(x;CS)[ logp(xjGs)]; (9)



IJCV 2023 Submission

where p(s) is the probability of the occurrence
of subset G. In order to adaptively control the
optimization of each subset, we set:

. X 2"
log p(xjG) [

o, [ logp(xiG)]:
(10)
As the joint conditional distribution in Eq. (9) is
able to be represented as the product of sequen-
tial conditional distributions in an auto-regressive

process, we can have:

p(s) =

Y
p(X|Gs) =

p(XijX<i ; G); (11)

where i is the index in a token sequence. In the
simplest casep(s) = 1 =2M , which means that any
subsetC; of input modalities has the same chance
to appear in the forward process, would cause an
imbalanced multimodal optimization because dif-
ferent subsets contain dierent levels of control
information. It is therefore necessary to introduce
a parameter to indicate the strength of the given
conditions. Intuitively, p(xjG) indicates how easy
it is to optimize this subset, so that when p(s)
proportional to [ logp(xjG)] can make MMoT
focus on the subsets that are more di cult to opti-
mize. We will show the e ectiveness of multimodal
balanced loss in ablation experiments.

3.4 Divergence-driven Sampling
Guidance

During inference, we propose multimodal guid-
ance for the CMCIS task to balance the in uences
of various control signals. Assuming that all the
input conditional modalities are statistically inde-

pendent and using M° to denote the number
of modalities in subset G, the sequential condi-
tional distribution p(x;jX< ; &) in Eq. (11) can be
rewritten as follows:

p(Csti 3 X<i )

p(Xin<i ,Cs) = P(GsjX<i )

p(Xin<i )
P(CmjXi; X<i )

. v 0
Xi X<i i
PXijx<i) B(CmiX<1)

m=1

(12)
Inspired by the inuence of the condition-
ing signal can be amplied by the guidance

scale (Dhariwal & Nichol, 2021), we use , to con-
trol the in uence of the m" conditioning signals:

¥ P(Cm jXi; X<i )

P (XijX<i ; G) /! p(XijX<i) o(onixa )

m=1
0
Yo p(xijx<iom) "
p(XijXai ;) '
(13)
For mitigation of computation, we denote
Eq. (13) to the log in logarithmic form:

= p(Xin<i )

m=1

logp (Xijx<i ;G) =log p(Xijx«i )+
m [ogp(XijX<i;Cm) logp(XijX<i;:)l;

m=1

we can then synchronously generate multiple par-
allel token streams: token streams conditioned on
di erent modalities including empty input, and
apply multimodal guidance on logit scores:

puncon - TL( XJ, )7

m = TL( XjCm); y
)\(|0 ( )

p :p uncon + m (p(r;?n puncon )’

m=1

where the function TL(Xjc) computes the logits

outputted by MMoT decoder when conditioned

on ¢, ; means the null condition for classi er free,

puncon are logits scores obtained by unconditional
token stream, pi" are logits scores obtained by
conditional token stream of modality m, p are

the multimodal guided logits score, and |, is

the guidance scale relevant to the corresponding
modality.

In addition, based on an observation that the
Jensen{Shannon Divergence (JSD) between the
unconditional logits and conditional logits con-
tains rich semantic information (Figure 9 (b)),
we use JS divergence to decide the multimodal
guidance scale:

m ! JSD(p(r::n puncon ):

It is worth noting that the suggested mul-
timodal guidance can not only increase sample
quality but, more crucially, lead to more spatially
coordinated images.
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4 Experiments

In this section, we evaluate the quality and diver-
sity of our versatile MMoT in synthesizing images
under various conditional modalities or compo-
sitions of them. The generated images with a
set of conditional input modalities show that
MMoT can carry out e ective interaction and
fusion of multimodal information (Sect. 4.3), and
superior results with extensive conditional image
synthesis methods state that MMoT is robust
to all kinds of modalities (Sect. 4.2). We con-
duct ablation studies to validate the e ectiveness
of dierent modules of MMoT (Sect. 4.4), and
we provide some important insights about how
MMoT realizes interaction and fusion via several
visualizations (Sect. 4.5).

We performed our experiments on two
datasets: COCO-Stu (Caesar et al., 2018; Lin et
al., 2014) and LHQ (Skorokhodov et al., 2021).
COCO-Stu is a derivative work of the COCO
dataset, which contains dense pixel-level and
instance-level annotations including text descrip-
tions, segmentation maps, bounding boxes, and so
on. LHQ is a dataset of 90k nature landscapes
but without any annotations, so we use pseudo-
labeling methods to obtain text, segmentation
masks, and sketch annotations. More details about
the datasets are in 4.1.1.

4.1 Experimental Setup
4.1.1 Datasets

We evaluate the proposed MMoT on COCO-
Stu (Caesar et al., 2018; Lin et al., 2014) and
LHQ (Skorokhodov et al., 2021). All input modal-
ities are obtained from either human annotations
or pseudo-labeling methods. And for fair compar-
isons with POE-GAN, the same pseudo-labeling
methods were used in our approach. We describe
details about each dataset in the following.
COCO-Stu is an expansion of the Microsoft
Common Objects in Context (MSCOCO)
dataset (Lin et al., 2014), which includes 91 stu
classes and 80 object classes. It contains 123,287
images of complex scenes, including 118,287
training images and 5,000 test images. All images
are randomly cropped to 256 256 in our main
experiments and ablation studies.

Annotations (i.e., text, segmentation mask,
sketch, and bounding box layout) for each image

are obtained from either human annotations or
pseudo-labeling methods(i) In COCO-Stu, each
image has 5text captions, we use CLIP text
encoder to extract a high dimension vector per
caption. (i) We direct use the segmentation
mask provided in COCO-Stu. (iii) To obtain
the sketch annotation, we rst detect the edge
per image with the HED (Xie & Tu, 2015) and
then simplify the rough sketch with the sketch
cleanup process (Simo-Serra, lizuka, Sasaki, &
Ishikawa, 2016). (iv) We use the bounding boxes
and labels provided in COCO-stu as the ground
truth bounding box layout
LHQ is a dataset containing 90,000 high-
resolution landscape images crawled and prepro-
cessed from Unsplash and Flickr. The dataset is
randomly split into an 86,400 training set and
a 3,600 test set, and all images are randomly
cropped to 256 256 in our main experiments.
Since the vanilla dataset does not come with
any manual annotations, annotations (.e., text,
segmentation mask, and sketch) are obtained from
pseudo-labeling methods{i) For the text annota-
tion, we use the pre-trained CLIP image encoder
to extract a feature vector as the pseudo text
embedding. (i) DeepLab-v2 (L.-C. Chen, Papan-
dreou, Kokkinos, Murphy, & VYuille, 2017) was
used to produce pseudsegmentation maskanno-
tation. (iii) HED (Xie & Tu, 2015) followed by the
sketch cleanup process (Simo-Serra et al., 2016)
was adopted to annotate each image with aketch
map.

4.1.2 Evaluation metrics

For dierent conditional image synthesis tasks,
we use dierent metrics to evaluate the gen-
eration performance over all existing methods
and our proposed MMoT. They are Incep-
tion Score (IS)(Salimans et al., 2016), Frechet
Inception Distance (FID)(Heusel, Ramsauer,
Unterthiner, Nessler, & Hochreiter, 2017) and
Clean-FID(G. Parmar, Zhang, & Zhu, 2021). IS
and FID are the most commonly used metrics to
evaluate the quality and diversity of generated
images. Clean-FID is an improved version of FID.
Inception Score (IS) measures the quality of
generated images by computing the expected KL-
divergence between the marginal class distribution
over all generated images and the conditional dis-
tribution for a particular generated image, using
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the class probability predicted by the Inception
Net. This metric is expected to capture both the
delity and diversity of generated images.

Frechet Inception Distance (FID) measures
the similarity between the embedding feature of
generated and real images. This is achieved by
tting the embedding features into a multivari-
ate Gaussian distribution and computing their
Frechet distance.

Clean-FID. Under the hood, computing FID
contains several subtle implementation decisions,
notably image resizing, quantization, and format-
ting. Any inconsistency in the steps leads to
results that are no longer comparable to other
methods. The resize operation and the image
guantization/compression are especially impact-
ful. To facilitate an easy comparison, (G. Parmar
et al.,, 2021) propose an easy-to-use libraryj.e.,
clean- d, which is more suitable for benchmark-
ing due to its reported benets over previous
implementations of FID.

4.1.3 Hyper-parameters

The number of encoder layers in the MMoT is
12, while the number of decoder layers is 24.
We use this asymmetrical structure because the
encoder is mainly used to extract features, while
the decoder is responsible for more complex map-
ping, i.e., converting the input features into the
nal image output, and this design can greatly
reduce the number of parameters. Encoders for
di erent modalities have the same number of
layers. Both encoders and decoders share an archi-
tecture of 12 attention heads and an embedding
dimension of 768. All training images in COCO-
Stu and LHQ are randomly cropped to 256 256
in our main experiments and ablation studies. We
use the AdamW (Loshchilov & Hutter, 2017) opti-
mizer with 1 = 0:9; , = 0:95 and the weight
decay is set to be 0.01. We use a batch size of 64
for training all our models and set the learning
rate to be 4.5e-6, and all the models are trained
for 300 epochs on 8 A100 GPUs.

4.2 Comparisons with Existing
Methods

We compare MMoT with one of the state-of-
the-art MCIS methods PoE-GAN (X. Huang et
al., 2022) and also with a wide range of UCIS

Table 1 Comparison on COCO-Stu (256  256)
(a) Text to Image (b) Bounding boxes to Image
Method FID # Clean-FID # Method FID # Inception Score "
LostGAN-V2 42.6 18.0 £0.50

- - - OC-GAN 417 17.8 £0.00
DF-GAN - 45.2 VQGAN+T 337 -
DM-GAN+CL - 29.9 LAMA 31.1 -
VQGAN+T* 27.8 28.1 Context-L2| 29.56 18.57 £0.54
POE-GAN 205 TwWFA 221 24.3+1.04
MMoT(Ours) 179 178 MMoT 19.2 26.7 £ 0.50

(c) Segmentation masks to Image (d) Sketch to Image (e) Al ¥
Method FID # Clean-FID # Method FID # Clean-FID # Clean-FID #
pix2pixHD 1115 - - - -
SPADE 226 221 pix2pixHD* 44.4 46.2
VQGAN+T 224 216 SPADE* 78.8 80.3
OASIS 17.0 19.2 VQGAN+T* 339 344

PITI 158 - PITI 20.3

POE-GAN 158 POE-GAN 255 136

MMoT 127 129 MMoT 231 239 126

We evaluate models conditioned on dierent modalities
(i.e., text, bounding boxes, segmentation masks, sketch).
The best scores are highlighted in bold and the second
best ones are underlined. For fair comparisons, all the
results are taken from the relative papers. *-' means the
related value is unavailable in their papers. *' denotes
results on samples from retrained models with the o cial
implementation. All Y means image synthesis conditioned
on text+segmentation masks+sketch.

approaches in the unimodal setting. Since M6-
UFC (Z. Zhang et al.,, 2021) and Composer
(L. Huang et al., 2023) are performed on di erent
MCIS datasets and their codes are unavailable till
our submission, we did not make direct compar-
isons with them.

4.2.1 Text to image synthesis

Text-to-lmage is designed to render a realistic
image from a text description, which is a rather
challenging task that dominates image genera-
tion. It is also a cross-modal generation task,
which requires the model to be able to generate
images that meet people's expectations based on
understanding the objects and their relationships
described in the text. For text-to-image synthe-
sis, we compare with DF-GAN (Tao et al., 2020),
DM-GAN+CL (Ye, Yang, Takac, Sunderraman,
& Ji, 2021), VQGAN+T (Esser et al., 2021) and
PoE-GAN (X. Huang et al., 2022) on COCO-
Stu. Since text annotation is not available in
LHQ, we compare with VQGAN+T (Esser et al.,
2021), MaskGIT (Chang et al., 2022), and NUWA-
Innity (Wu, Liang, Hu, et al.,, 2022) in the
language-free setting,i.e., language annotations
are unavailable and we take the pseudo-labelling
texts as condition. The quantitative results of



11

1JCV 2023 Submission

Fig. 4 Qualitative comparison of text-to-image synthesis results on COCO-Stu . More results are demonstrated in A.1

Fig. 5 Qualitative comparison of bounding boxes-to-image synthesis results on COCO-Stu . More results are demonstrated

in A.l

text-to-image synthesis on COCO-Stu and LHQ
are reported in Table 1 (a) and Table 2 (a), respec-
tively. In Figure 4, we also provide several qual-
itative comparisons. MMoT has comparable per-
formance, both quantitatively and qualitatively.

4.2.2 Bounding boxes to image
synthesis

Bounding boxes to image generation aims to gen-
erate photo-realistic conditioned on speci ed lay-
outs which consists of a set of object bounding
boxes and corresponding categories. Compared
with text-to-image synthesis, such a layout pro-
vides a simple sketch of the image, which makes
the generation more user-friendly and control-
lable, but this also reduces the diversity of gener-
ated images to some extent. For bounding-boxes-
to-image generation, we compare with LostGAN-
V2 (Sun & Wu, 2021), OC-GAN (Sylvain et al.,
2021), VQGAN+T (Esser et al., 2021), LAMA (Li

et al., 2021), Context-L2I (S. He et al., 2021) and
TwFA (Z. Yang et al., 2022). The performance of
several methods for bounding boxes to image syn-
thesis on COCO-Stu is evaluated quantitatively
and qualitatively. The quantitative results are
reported in Table 1 (b), while several qualitative
comparisons are shown in Figure 5. The evalu-
ations demonstrate that MMoT achieves better
performance compared to the other methods.

4.2.3 Segmentation to image synthesis

The goal of segmentation to image synthe-
sis is to generate a full-color image from a
grayscale segmentation mask, where each pixel
in the mask corresponds to a specic object or
region in the image. For segmentation masks-to-
image synthesis, we compare with pix2pixHD (T.-
C. Wang et al., 2018), SPADE (Park et al., 2019),
VQGAN+T (Esser et al., 2021), OASIS (Sushko
et al.,, 2022), PITI (T. Wang et al., 2022) and
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